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Abstract—A mixed variational principle is presented for stress analyses of laminated composite
structures with or without delaminations and discontinuities. Of purticular interest is the use of a
functional involving interlaminar stresses and in-plane strains, instead of strain or complementary
energy. A laminate is then treated as an assemblage of sublaminates with assumed variations of
displucements and interlaminar stresses through the thickness of each sublaminate. Application of
the vaniational principle, at this stuge. reduces the problem to a set of differential equations and
constitutive relations for cach sublaminate similar to those encountered in higher order plate
theories. as well as continuity conditions of displacements and equilibrium of surface tractions at
perfectly bonded intertaces. It is demonstrated with an example of a disbonded laminate modeled
as an assemblage of two sublaminates that the mixed boundary conditions at a partly bonded
interface yicld concentrated forees at the disbond tips. This is the exact form of stress singularity in
this model. Finite element analyses are utlized for obtaining solutions with more sublaminates.
Stress ficlds and energy release rates at delamination tips are compared with clasticity and standard
finite clement solutions in another illustrative example.

INTRODUCTION

Growth of disbonds created due to imperfect bonding or foreign object impact can severely
influence the load bearing capacity of laminated composites. For this reason, delamination
fracture has been the subject of many investigations. Mcthods employing Fourier transforms
and singular integral equations discussed in several studies[1-3] are suitable for stress
analysis when the disbonds are located away from edges or other discontinuities. In many
cases, such disbonds can, however, occur near edges or other geometric discontinuities, and
may in fact originate at such locations. Free edges in laminates, ply drops, and bonded.
joints are examples. Rigorous clasticity solutions and numerical caleulations for such
problems ire impossible from practical considerations. Standard finite element methods
(or those employing clements with singular ficlds) have been utilized in such problems[4, 5.
In such currently available models with assumed displucement ficlds, it is necessary to model
cach layer of different orientation separately. [n many cascs, however (see results for elliptic
disbonds and those for two-dimensional (2-D) problems(2, 3, 6. 7] for large disbonds),
an approximate solution based on the assumption that disbonds are located between
sublaminates which deform according to sheur deformation plate theory yields strain energy
release rates close to elasticity solutions. This is truc even though the stress singularities in
these approximate solutions appear as concentrated forces at disbond tips[6-8]. This is
especially true when the disbond dimensions are large compared to the thickness and the
plate models yield a very good approximation. Since disbonds of comparatively small sizes
are usually not critical, it appears that for all practical purposes it may be unnccessary to
use standard finite element techniques modeling cach layer. For more accurate solutions,
laminated plate theories of higher order, or a large number of sublaminates through the
thickness of the laminatc with each sublaminate still containing many layers, can possibly
be utilized. In higher order plate theorics, however, calculation of plate properties based
on assumed strain ficlds does not accurately represent effects of some stiffnesses. For
example. shear stiffnesses arc more accurately represented by the assumption of constant
stress fields. and correction factors having values close to those of isotropic or orthotropic
plates[9, 10}, than by the assumption of constant strain fields. For these reasons, in this
study a mixed variational principle with assumed linear variation of displacement fields and
transverse shear stresses. and constant transverse normal stress through the thickness, is
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Fig. 1. A laminate divided into N sublaminates,

formulated (as described later) to obtain a higher order plate theory for cach sublaminate,
which is applicable to the general three-dimensional (3-D) problem with disbonds and
discontinuitics (Fig. ). Displacement continuity conditions at bonded interfuces are
imposed in terms of Lagrungian multiplicrs, which arc the tractions at those locations.
Existence of concentrated line forces at disbond boundaries is also demonstrated. This
formulation, although similar in form to theories developed by other investigators (see
Rets [11, 12] for example) is more straightforward for practical applications,

With the imposed condition that displacements of and tractions on adjacent layers on
the two sides of a bonded interface be the same (opposite in sign for traction) the Euler
equations for generalized plane strain (quasi-3-D or 2-D) problems can be reduced to a set of
simultaneous ordinary differential equations as in Refs [11, 12]. Counting the concentrated
forces at disbond or crack tips as unknowns, there exists the required number of unknowns
to satisfy the boundary conditions or other required relations across disbond or crack tips.
It may be noted that such conditions on displacements {not displacement derivatives) and
moment or force equilibrium (not stresses) can only be satisticd. For this reason, con-
centrated forces exist at such locations as in similar approximate formulations{6-8, 13].
Such a system of equations for a finite (but not small) number of sublaminates is, however,
not very simple, and the procedurc for development of a general algorithm can be quite
involved because of the possibility that some of the characteristic roots of the system of
equations can be repeated[1 1, 12]. Also, such an approach is useful only in linecar problems.
For these reasons, a finite element model is developed for quasi-3-D problems based on
assumed linearly varying displacement fields in the direction parallel to laminations. String
stiffnesses of rectangular elements to consider effects of large deformations, as well as
change in shear stifiness to model non-linear shear response, which are important in bonded
joint or other problems, can then be easily incorporated into the analysis.
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MIXED VARIATIONAL PRINCIPLE

Consider a laminated plate with K laminae as shown in Fig. 1. Let «f, ¢} and &% denote
the displacements, strains and stresses in lamina k referred to the Cartesian coordinate
system shown in the figure. Let % and 47* (i=1,2,3: k=2, 3,...,K) be the surface
tractions on laminae k — 1 and &, respectively, on surface A,, parts of the interface k which
are not delaminated and it be the displacement on the corresponding surface. For prescribed
surface tractions T* and/or displacements «* on the boundary of such a laminated plate
as well as body forces b; one can pose the following mixed variational principle :

Variation (/) = 0 ey
where functional /is given by
K
I=Y% j [W(e.5. 0rs) — Ohgela + /205 (uf, + uk)) — bFut] dv
k= | Jog

K
-5 | et - @)+ At - )] dd, - f T*u; dS— f To(u—u¥) dS. (2)
SO

kw2 JA, S,

In the above equation, aff takes values 11, 22, 12, 21, yo varies over 33, 13, 31, 23,32 and i
and j vary from 1 to 3; repeated indices indicate summation. u, and i‘," in the last two
surface integrals are equal to the displacements of laminae the surfaces of which coincide
with the bounding surface and unknown tractions on §,, respectively. S, (or S,) denotes
part of the bounding surface, where stresses (or displacements) are prescribed. v, are the
direction cosines of thc outward normal to the bounding surface. The functional W* also
depends on the material propertics of lamina k (clastic, non-lincar elastic, or elastic—plastic
total deformation theory) and is chosen to satisfy the constitutive relations such that

oW aw

——— H -——— = Lk . P
deky o and do%s e (3a,b)

It may be noted that if a stress component is expressed by eqn (3a) the corresponding strain
does not appear in eqn (3b). If one seeks condition (1), i.e. / to be stationary permitting
the functions ut, e (aff = 11,12,22), a4k = 1,.... K), At i (k =2.3,....K) and T to
vary over appropriate domains, then the Euler equations for the variational problem are
given by the relationships described by eqn (3a) and the following set of equations:

oW
i * e 12045 +15,), ofy+b; =0, ey =12055+15.) (k=12,...,K)
¥
—o-k]l‘l = .'l"k' M = ;'l‘k‘ al/vl = 7"’1“ on Sﬂ‘ oi/v/ = 72!0‘ ul = ul‘ on Su (k = 203$--~|K)
(4a-h)
W' =@ =, I+ =0 (k=23,....,Kon 4,). (4i,))

It is clear, therefore, that if all variables are chosen to fulfill eqn (1) all equations of
the boundary value problem under consideration are identically satisfied provided

& = 1205 +1,); 70 =33,13,31,23, and 32. (5)

However, in the next section it is shown how approximate solutions may be obtained by
treating a laminated structure as an assemblage of sublaminates, choosing linear variations
of displacements and interlaminar stresses through the thickness of each sublaminate which
may contain laminae of different orientation or materials, and directly using the variational
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principle, eqns (1) and (2). The authors are not aware of any available mixed variational
principle which allows such a choice of the field variables in an assemblage of sublaminates,
each of which may be inhomogeneous.

APPROXIMATE FORMULATION AS AN ASSEMBLAGE OF SUBLAMINATES

We subdivide the laminate into N sublaminates, nth sublaminate (n =1,2,...,N)

N
containing P, numbers of laminae (note that } P, = K) all perfectly bonded to one

n=1

another and assume the following displacement fields, and interlaminar (6,3, ¢3,, 032) stress
fields in each sublaminate, z, being the --coordinate measured from the midplane of that
laminate

W = u”(%, p) + 290 (x. ) (62)

oy = 03(X,¥)
o) = 0% = 63 (x,)) + 2,61 (x, y)

02 = 0% = 6 (x, §) +2,08"(x. ). (6b)

We also assume that the strain ficlds can be derived from displacement fields (6a) by eqns
(4c) and (5) and that at all perfectly bonded interfaces inside a sublaminate At* and it are
chosen to satisfy cqns (4d), (4e) (so that eqn (45) is also satisfied because of eqns (6b))
and (41), respectively. We denote the surface tractions on the surfaces of sublaminate # at
=, = th,/2 (cither prescribed in f,»" or unknown in 4, or i‘?) as t£". Further, the unknown
surface tractions on other bounding surfaces (parallel to the z-axis) of sublaminate n where
displacements are prescribed are assumed in the form given below. It may be noted that N,
M, Q. R (unknown on the bounding contour) are the stress resultants used in higher order
plate theories[14].

0" 12z,
PR

v
On
v N,- 12.',, v . v
T,O"=7;"‘+“/;‘3—M,-m; i=1,2 and ‘3)=
n L

R (6¢)

Contracted notations for interlaminar stresses are used in eqns (6b). In what follows, we
will use similar contracted notions for other stresses and strains given below and omit
superscript # denoting the sublaminate

0y =0y, G =0,, 0 =0,
Ey =8, Exn=¢£,, &3 =¢&;
2 =8y, 23 =2¢5, 23 =& ()

If the relationships between stresses and strain in the lamina k are known in terms of the
(6 x 6) stiffness matrix [C], e.g.

g, = C,»,f:j+C,-,;€ﬂ
0, = C,;6;+ Cypty 8)

where i, j vary over 1, 2, and 3 and «, f# vary over 4, 5, and 6, then the functional W (the
superscript is omitted) in eqns (2) and (3) can be expressed as

W=1/2[Ce6,+2C£0,— S,56.05]. 9)

It should be noted that use of this functional permits the choice of interlaminar stresses
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(6b) irrespective of assumed displacement fields (6a), which yields a better representation
of interlaminar stresses than that obtained by assuming displacement field only, especially
in the case of sublaminates containing laminae of different orientations or materials.

The elements of the three (3 x 3) matrices C*, C” and § can be calculated from the
elements of C by expressing o, and ¢, in terms of ¢, and 6, (i = 1,2,3; 2 = 4, 5,6) using
eqns (8). In many laminates the following relations hold and will be assumed here although
one can keep the generality if desired:

Co=00=123;2a=56) and Sy;=0x=4;8=35,6). (10)

Substitution of eqns (9) and (10) and the assumed displacement and interlaminar stress
fields (6a) and (6b), strain fields (4¢c) and (5), interface tractions it* (satisfying eqns (4d),
(4e), k = 2.3,.... P, and expressed as ¢2" at other locations) as well as f‘?" (6¢c) ineqn (2)
and integration with respect to z, over the thickness 4, yields a modified expression for /in
terms of the new variables introduced above and i}, the unknown displacements over
perfectly bonded parts of the interfaces. If one now seeks [ to be stationary, permitting
w7, 15", @ to vary over appropriate domains, one obtains a set of Euler equations of
the variational problem which are similar to those encountered in higher order plate
theories[14]. There are, however, some differences because of the assumption of dis-
placements as well as interlaminar stresses and the mixed boundary conditions considered
here. For these reasons, we give below the final form of these equations which is suitable
for practical applications. The intermediate steps are omitted here for brevity, but can be
found in Ref. [I5]. In the following equations N, M, Q. R are the stress resultants used in
higher order theories. €%, x, y%, 7', are extensional strains, curvatures, and midplane and
lingarly varying shear strain components, respectively (the superscript #, denoting subla-
minate s is omitted). A4 is the plan area of the laminated structure, A, is the bonded part of
the interface n and A} is a part of the unbonded portion where known displacements are
prescribed. C; (or C3) are parts of the boundary contour of subluminate n where dis-
placements (or stresses) are prescribed.

Differential equutions for sublaminate n
N+ Ny +tf +t7+fi=0
Ny i+ Ny +t3+t3 + =0
QuitQu+ii+t5+ /=0

h,
M +M;,+ 7(!T—tr)+y.-—Q| =0
hll + -
M +M,,+ '2“(11 —1;)+9:~Q:=0
h, -
R+ Ry =N+ '2‘(13'—’3)‘*‘93 =0
Jugi= Jb,(l,:,,) d:,. (1)

Constitutive relations for sublaminate n
N; = Aj€] + Bk + Aty
M, = B;&)+Dyx;+ Busy: ij=123
Ny = A8} + B+ Assty
Q. = Lugvs+Lisvs
Ro= Lo+ Liyp: af=12 (12)
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where
A=A+ ELEJEy, As=EE,,
B= B+ E FjyEu, Bi=F4E.,
D= D +F,F/Es, As=1/Ey,

-

4,.B,,D,= jCI,-(l,:m z3) ds,

1 1
EFy= F‘J.C;'a(l--'n) dz,, Eu= Pjsaa dz,

(L () _\E Fy (13)
(L7 W iF) (Gl
, 1 12z, 144z .
E:’ﬂ'yFa‘ﬂ'~Gz'/i’ = Js(a’+4)(ﬁ'+4)(/75v “T:—, —h—,',’—) dz,; o, =12
Strain component displacement relations for sublaminate n
& =uh, K=Y, e5=ulr+ul,; (nosum)i=1.2
K}=¢’I.2+'ﬁ2.lv ‘:J=¢}v Yg='ﬁa+"?.«~ Yul =¢3.a; x= l'z (14)

Continuity of displacements and equilibrium of tractions over bonded interfaces (A,, n =

2,3,....N)

on  Ma oot M ~tn -1 +

u; +‘5 'M:“:" _i"pl =l7l” ¢ " )+li"=0* (ls)
Prescribed displacement conditions

h
u’ + _;’.M =" n=1,2,...,Nover A

h
u — ;)’—'(M:u,.“"" n=23,...,N+1 over A} (16a)
u" =u* n=1.2,...,Nover C"
,//’,'= ot
1 !

1 12z
#0 k= || — "1d-
u. Yy, J‘“x (h,, L] h: ) - (I6b)

Prescribed traction conditions on C’
Nt=Nwvi+ Ny, = (1% +79

v

Nt= Ny, + N, —(t1°+17°)
v l
A’f=M|V|+MJV:—‘121(’T0"lx_°)
Y e w0 -0
M':'=M3"|+M2Vz-“,-(’2 —117)
Q% = Qv+ Qv ~(11°+15°)

v h"
R‘=R,v,+R2v2-——_,~(t}’“—l_{°) (17
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N* M* = J.TV',‘(I.:,,) d:,
O* R* = Ji”;(l,:,,) d:,. (18)

A set of equations similar to eqns (17) with superscript * replaced by 0 relate the
unknown stress resultants on C;, where eqns (16b) hold. In these equations, and in eqns
(17 ¢2°(C) and t£*(C) are line forces which act on laminate surfaces z, = +A,/2 at contour
C. These are either prescribed or unknown. Interactive forces between two sublaminates
fall in the latter category. Such forces are expected at the contours which are the free edges
of a laminate as discussed later. Similar line forces are contained in ¢} in eqns (11) at the
contours which are the delamination boundary curves (shown by dotted lines in Fig. 1)
across which the displacement components u;, i, are continuous, but their gradients are
not necessarily so. These line forces are caused by the discontinuities in these displacement
gradients, and can be called the stress singularities[6-8, 13] in the mixed boundary value
problem of bonded sublaminates (or plates) described by eqns (11)-(18). In the next section
we will demonstrate the existence of these forces from the exact solution of a sample
problem.

In parts of area A, where all the sublauminates are perfectly bonded, the differential
eqns (1) can be reduced to a set 3(N 4+ 1) second-order partial diffcrential equations in
terms of 3(N+ 1) displacements at (N + 1) surfaces by making use of eqns (15) as well as
relations (12). In other parts, where delaminations exist, similar equations are obtained,
but the number of unknown interface displacements, as well as equations, will be more.
When no displacement conditions are prescribed on surfaces perpendicular to the z-axis,
these equations can be solved with enough unknowns, which together with the unknown
concentrated forees, can be evaluated to satisfy eqns (16b) and (17), as well as continuity
of «f, ;] and force and moment equilibrium across delamination boundaries.

For example, let us consider the problem to be quasi-3-D and restrict our attention to
the plane A4 which passes through the tip of a delamination as shown on the top half of
Fig. 1. On the right-hand side of A4, there are 3(N + 1) displacement variables. On the left-
hand side, which contains one delamination, there are 3(N +2) displucement variables. In
the solution of the second-order ordinary differential equations, there will be a total of
12V + 18 unknowns, half of which (i.c. 6N +9) are available for satisfying displacement
continuity and equilibrium conditions across the plane A4 and the rest are to be used for
satisfying conditions at ends x = constant away from AA4. At AA, 3(N+2) displacement
conditions (three at each of N+ 2 interfaces) and 6NV equilibrium conditions (six for each
of N sublaminates) have to be satisfied. In general, one therefore, needs 3(N—1) extra
unknowns which come from three concentrated forces at A4 in x, v, - direction at
cach interface other than the top and bottom surfaces of the whole laminate. An exact
mathematical proof of the existence of such forces in the general problem is possible but
complicated. We will give this proof for a simple problem considered in the next section
involving two sublaminates. It is clear, however, that these forces are caused due to the fact
that displacements are continuous across A A, but their gradients are not. The existence of
such forces at interfaces other than those containing delamination tips may seem impossible
at first glance but is a natural consequence of such discretization schemes and assumed
ficlds (similar phenomena are observed in finite clement solutions). However, the forces at
interfaces other than the ones containing delaminations, will be small and will reduce with
increasing M. It is shown in the double cantilever beam problem considered later that even
the force at the delamination tip reduces as the number of sublaminates, N, is increased.
and the stress field approaches the exact stress solution. As shown in the examples, energy
release rates at delamination tips can, however, be evaluated with sufficient accuracy even
with a small number of sublaminates.

Pagano[l 1, 12] obtained a similar approximate formulation for homogeneous subla-
minates. and solved the 2-D free edge problem of a laminated composite. In his formulation,
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Fig. 2. Results for unit normal stress ¢ on delamination surfaces in a laminate.

however, the concentrated forces are absent, and the interfuce stresses at the edges (which
are assumed finite) appear to diverge as the number of sublaminates is increased. Even for
such 2-D problems, the solution algorithm becomes quite cumbersome as the number of
sublaminates is increased. Moreover, a major objective of this investigation was to determine
the influcnce of large deformation and non-lincar shear response of adhesives in single lap
bonded joints. For these reasons, a finite clement solution of such 2-D problems (or quasi-
3-D) since three displacements are retained, but all quantities are assumed to be independent
of y is formulated as discussed Jater. Other quasi-3-1D problems where stresses are inde-
pendent of v, but the displacements are not necessarily so (as in the free edge problem of
a laminate which is long and loaded in the y-direction) may be obtained by superposition.

STRESS SINGULARITY IN THE FORM OF FORCES

Existence of concentrated forces at disbond tips has been demonstrated for bonded
plate models employing shear deformation theory[8, 13]. For the present model, we will
demonstrate this with the exact solution for a sample problem. Consider a midplane
symmetric laminate which is infinitely long in the x- and y-directions, but contains a disbond
of length 2a at the midplane (Fig. 2). The disbond surfaces are subjected to a normal
pressure distribution (equal and opposite on the two surfaces) which is independent of the
y-coordinate so that the problem is quasi-3-D. For simplicity, we will consider the luminate
as an assemblage of two sublaminates {onc above and the other below the disbond) which
are themselves midplane symmetric and balanced. We also assume that D, = O whichisa
good assumption for the case of a repeating layup pattern. The non-vanishing displacements
and stress resultants are o}, . 4%, ¢+ N M. Q.. N,. and R,. Because of symmetry
conditions about the disbonded interface we nced to consider only the top sublaminate
which is stress free at the top surface. We, therefore, have no body forces and

tf =t =0 —x<x<x
ty =90 —w <X <X
1y = p(x) —a<x<a. (19a-¢)

[t is clear that one has to solve the first, third, fourth and sixth equation of eqns (1 1) with
second terms and body force terms { £, g) on the left-hand side of each equation equal to
zero. The rest of the equations in eqns (11) are identically satisfied.



Modeling laminated composite structures as assemblage of sublaminates 447

Writing
Ut =u+h2y, i=13 (20)
where # is the thickness of the sublaminate, we note that
U =0, |x|>a (21)
Making use of constitutive relations (12) and eqns (19a)-(19¢c) one obtains from eqns (11)

A A
~(tt +60) = S UL+ UL+ 57 (U= Us) =0

L L
—(f+10)2= “ S (Ut =Uti) = 53 (UF =UD) = (US4 U3)) = 0

L, —A4 L,+4 L 1
_1‘*-_—(_3_'_7_,'._'1) tl_(';zh_'_i)(/n <4”+le‘|') ;.ll

L A
+(4" ,,z)v,.. SEU-Us) =0

L,+4 L,—4 L
i = (B te)or, - (fegte)one (5 - ).

L " A
+(4“ h,)u,..+ h‘,‘(u, Us). (22a—d)

One approach often used in crack problems in elasticity is to employ Fourier transforms
and reduce the system of equations to a system of integral equations for determining the
displacement discontinuitics. We will follow the same procedure and introduce the Fourier
transform of a quantity as

I(s) = Jm 1(x’) e** dx’ (23a—<)

-0

where i = \/— 1 and x* = x/h, the non-dimensionalized x-coordinate.

Let @’ = a/h. the non-dimensionalized half disbond length. With the help of known
relations between transforms of derivatives of quantities and their transforms and eqns
(22a)-(22¢) one can express U7, U;, and J% in terms of J5. Performing the required
algebra and substituting in eqn (22d) the following relation is obtained :

1 s2s 4L S
L+L (40D (2 +(3)

Ty=~ (24a)

where T, and ¥, are Fourier transforms of the quantities
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h3 x
Ti(x) = 'D—,[ 15 (x) dx’
1

- X

1 U5

14 3(X) = E ';.Sx—, (24b.. C)
and
[, = Dn/th2
12 = D, /4L%,
10 = Dl1/4(A¢~x—f‘ﬁ¢/f4n)h2
CS = 12/10
LT48E = (LWL + )/ +1)
iCs = Ll + 1). (25a-f)

Because of eqn (21) one must have
J Vi(x) dx' =0. (26)

Equations (24) imply that T, and V; cach satisfy fourth-order differential equations for
[x’| > @ and |x'| < &', respectively, which may be obtained by considering the two regions
of the sublaminate separately. This yiclds an alternative way for solving the problem by
imposing appropriate continuity (of displacements) and cquilibrium (of stress resultants)
conditions at |[x’| = ¢’ with due consideration to concentrated forces at disbond tips. In
many cascs, such a solution is easier to obtain, and we will follow this procedure in another
example considered later. However, to show the existence of these forces, we take the inverse
transform of eqn (24a). Noting that V,(x’) = 0; |x’| > a because of (21) once obtains

l L[ e o
T](x,) = — [T-{,:[; z—nji y V_‘(X") J\_/ . j(s) e" ) ds dx” (2711)

where f(s) is the rational function of s* in the right-hand side of eqn (24a). In what follows,
we will assume that {7 are real, and denote {, as their positive square roots. Writing f(s)
in the form of partial fractions and making use of some integral formulae{16] eqn (27a)
reduces to

l Za 2 h L
V}(.\f')'f‘ ‘)J‘ I:Z .'l.‘ c TN, V)(.Y”)] dy” = —(ll +[})T](x,)
< J-a Lk

- | 5%
where

b, = [Cf(lg—lo)+lzl/{[0(1| +1) (1 =D}
by = —[33(li—l) + LY/l +1) i~ D)} (27b-d)

Since T'3(x") is known (sce eqns (24b) and (19d)) for |x'| < &', this is a Fredholm integral
equation of the second kind for determining V, in that domain. We now note that ¥y must
be a continuous function for |x’| < &', but there is no other requirement except for condition
(26). It may be noted that discontinuous derivatives of displacements are possible if the
pressure p(x) is in the form of a concentrated force for |x’| < a’ as in shear deformable
beam theory.
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A solution of the integral equation (which is given later for uniform pressure) will
indicate that V;(x") usually approaches a non-zero value as |x|" = a’ and therefore, because
of eqn (21). T, has a discontinuity at x’ = a’ given by

Vi@™)

Ty =Ty ™) =~

(28a)

where F(a’~) and F(a’*) indicate the values of the function as @’ is approached from the

left and from the right, respectively. A similar discontinuity exists at x’ = —g’. Therefore,
because of eqns (24)
- ’, Dl { l ,— ’ ’ ’ 4 , . ’
() =27 Z—_:'[_[Vl(a )o(x'—a’) = Vy(—a'*)o(x +a)] + F(x) (28b)
1 2

where ¢ denotes the delta-dirac function and F(x’) is a function which is equal to p(x’) (the
prescribed pressure) for [x'] < @’ and for |x’| > a’ it is the sum of two exponentially decaying
functions, since ¢, (k = 1.2) are positive and real numbers. It may be noted that for a
majority of laminated composites this is true. However, the expressions given above are
also valid for complex values of {{ (note that {3 = {?) provided {; are chosen as their roots
with positive real parts, so that {, = Ciand b, =6,

We have shown the existence of concentrated forces at disbond tips for a particular
problem with only two sublaminates. In a general quasi-3-D problem for an infinitely long
laminate with many sublaminates and sclf-equilibrating tractions on prescribed delamination
surfaces or on top and bottom surfaces of the laminates a similar Fourier transform solution
is applicable, and a sct of integral cquations similar to eqn (27b) may be obtained. It may
also be shown that the concentrated forces in (¢4, £,, 2;) at the disbond tips are proportional
to the corresponding displacement discontinuity gradients at the same tips, although the
constants of proportionality may change depending upon how many sublaminates are used
in the model. The general nature of the stress (foree) singularity, however, remains the
same and will also hold for lauminates of finite length. Such forces will also exist at other
discontinuities like free edges. In such cases, however, it is better to obtain solutions in a
different manner as described earlier, since solutions in addition to those in the form of
Fouricr transforms must be assumed to satisfy conditions at the ends. Once the concentrated
forces ¢ and displacement discontinuity gradients (") at the disbond tips are evaluated,
the encrgy release rates may be obtained by the application of Irwin’s virtual crack closure
method considering another crack tip an infinitesimal distance ahead of the present one. It
is casy to show that for the particular singular nature of the stress field, the result for cach
modec is

G=ru" (29)

where forces and displacements for a particular mode ([-III) are considered. The result is
also valid for cracks other than delaminations (e.g. transverse cracks) and is now being
widely used in conjunction with standard finite element techniques where ¢¢ is taken as the
force transferred at the tip node.

For completeness, we give the solution of eqn (27b) for uniform pressure, and compare
the results for a particular laminate with other approximate and rigorous solutions.

When

p(x) = pg
Tyx)=px, |¥X|<d
where

p’ = poh’|Dy, (30a-d)
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and an exact solution of eqn (27b) is

px? C, sinh {ox’

~C\x"+ -
! cosh (ya’

Vi(x) =

where C, and C; are constants chosen to make the coefficients of sinh {,x* (k = 1,2) equal
to zero in the expression obtained after substituting eqn (30d) on the left-hand side of eqn
(27b) and integrating the second term. For tanh A,a” = 1 (although it is not necessary to
make this assumption) the results can be expressed in the following simple form:

a’  (y=Da? {(1,—14) _ 1.}::'— {1l+lz (2 +1o) (13-1)}

6 20, & oG 1,

a+(-1D)/G

a? N I ot 1§a,+ L +1,
3 74 3 ¢

Cola’+ (15— 1)/80]

Caxp'(l,-1) 30

where

Iy =+ +1,
14 = 1+CQ!;+12.

From eqns (30d) and (28b) the displacement discontinuity gradients and concentrated
forces at x” = 4’ are

Ut = 2V3(@) = —2(Cy—Cy—p'a’*[6)

T
R +1)

5

V(@) (32)

and the energy release rate G, is obtained from eqn (29). The same result will be obtained
from the consideration of change in crack or complementary energy with respect to a. The
term crack energy means the work done by the pressure on crack opening displacement
and it is often used in the literature on fracture mechanics.

Figure 2 shows the displacement gradients and energy release rates obtained by the
following four methods for a 25.4 mm disbond in a 64 ply ((0,/ £45:/ £45,/0,),), ASI-3501
plate.

(1) Numerical solution of integral equations to which the exact elasticity problem is
reduced(2, 3}.

(2) Constant strain finite elements.

(3) Present theory employing four sublaminates (as shown in Fig. 2} with the two
sublaminates above and below the delamination containing two 0° layers only. A finite
element method discussed later is used for this purpose.

(4) Closed form solution for two sublaminates based on present theory discussed
above.
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Table 1. Properties used for calculation

AS1-3501-6 Material, ply thickness = 0.1398 mm

0° Layers:
E.,=125GPa, E,=E.=10GPa, G,.=58GPa

Vo = Ve = 0.28, v,. =035

+45° Layers (smeared) :
E.=E =1993GPa. E =11.06GPa, G, =4.52GPa
v, = 0718, v.=v, =0.104

A shear correction factor of 5/6 is used in computation of
effective shear stiffnesses in the case of one sublaminate model
since a repeated lay-up pattern exists(9, 10]. In case more sub-
laminates are used, the correction factors are omitted.

Properties used for the calculation are given in Table 1. To reduce the number of
degrees of freedom for method 2 we have replaced the +45° layers by a homogeneous
material with smeared properties (Table 1) based on constant in-plane strain and constant
transverse stress assumptions. The same properties are also used in all other methods for
the purpose of comparison, although it is not necessary to do so. As can be seen from the
figure, the crack opening displacement gradients as well as energy release rates from the
first three methods are extremely close to one another. It should be noted, however, that
the displacement gradients at the tips are unbounded for the exact elasticity solution, but
they are bounded for all other methods. The displacement gradients near the tips obtained
from the closed form solution are quite different from those from other methods. Similar
differences will also exist in the stress field adhead of the disbond tip (see results for another
problem given later). It is clear from the results of method 3, that by choosing thinner
sublaminates near delaminations (or increasing the number of sublaminates) more accurate
representations are obtained. This phenomena is analogous to that observed in standard
finite element solutions with finer mesh size near crack tips. It should be noted, however,
that the energy release rate from the closed form solution is extremely close to other
solutions. This is not surprising since strength of materials type solutions are often found
to yield accurate estimates of energy release rates in many problems. A shear deformation
theory solution of this problem is given in Ref. [3].

It should be pointed out that for method 2, it is necessary to model the smeared +45°
material and 0° layers separately, whereas for method 3, they are lumped in a sublaminate
(except for the 03 sublaminate near the disbonded interface). For this reason the degrees
of freedom and the band width for method 2 are about three times those in method 3. It is
clear, therefore, that the present method should yield substantial reduction (60%, or more)
in computational times.

In the next section we give the outline of finite element modeling using the present
approach, and later we will compare the stress fields ahead of a crack tip in another sample
problem obtained by increasing the number of sublaminates with those calculated from
exact numerical solutions.

FINITE ELEMENT MODEL FOR 2-D PROBLEMS

In finite element modeling, the laminate (or laminated structural component) is divided
into a finite number of parts. For problems where some of the sublaminates are truncated
before others (as in a bonded joint) each truncation location is made to coincide with one
of the boundaries of the partition. Let the nth sublaminate be divided into M parts. The
mth element shown in Fig. 1 has length [, height A, and four nodes numbered 1-4. To
obtain the local stiffness matrix it is referred to a local coordinate system x’, 2’ (the primes
are omitted in the expressions which follow), and it is assumed that the three displacements
u; in the element are given by (the subscripts 1, 2, 3 of u as well as the subscripts m and
to / and A, respectively, are also omitted)
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u=u'+zy
o 4 —w+u+u Wt -t +ud)
= 4 2
w—uwr+u—ut vt —-u?
v = + ( )x
2h lh
« = displacement at node j, j=1,...,4. (33)

The nodal forces can be easily calculated from values of N, M, Q and R at x = +//2 and
t# atz = +h/2 (which are obtained by the use of eqns (11) so as to satisfy static equilibrium).
They could also be obtained by using the virtual work principle. This results in the following
relationship between nodal forces and nodal displacements [ N] = [K'] [1] where

INT" = (NN, NDL(VE L) (N ) (N NS N D)

" = (i, b)), (uf, .0, (el L), (e, w3, us)]. (34)

The superscript denotes the location (node) and the subscript indicates the direction of the
forces and displacements and [K] is the local (12 x 12) symmetric stiffness matrix which is
better written as an assemblage of 16 (3 x 3) submatrices [K™] given in the Appendix. Note
that [K**] = [K™]".

It should be pointed out that if local coordinates of some of the elements arc inclined
with respect to global x, - coordinates (as in the problem of ply drops) appropriate trans-
formation laws have to be utilized to obtain rotated local stiffness matrices before the global
matrix is assembled. In some cases, use of triangular clements are necessary, local stitfness
matrices of which are discussed in Ref. [15]. String stifnesses due to large deformations
which should be added to the terms of the stiffness matrix of rectangular elements and
modifications necessary to consider the clastoplastic shear stress-strain relation of adhesive
clements arce also given in Ref. [15].

THE DOUBLE CANTILEVER BEAM PROBLEM

In this section, we consider a wide double cantilever beam shown in Fig. 3 subjected
to two equal and opposite forces P on the two arms. We will assume that these forces are
the resultants of parabolic shear stress distributions, although any general distribution may
be considered without any difficuity. We first give a closed form solution for two
sublaminates (one above and the other below the crack) each of which is midplane symmetric
and balanced. As in the previous illustrative example, we also assume D' ; = 0 and consider
the top sublaminate only utilizing the symmetry conditions about = = 0. However, we will
follow a different route by choosing solutions of the differential equations, eqns (11), in the
cracked (—a € x < 0) and uncracked parts (x > 0) as discussed earlier. We will also assume
that the uncracked length is Jarge compared to a and it can be considered to be infinitcly
long. For brevity, we omit the details and give the expression of non-zero quantitics as a
function of x" = x/h, h is the thickness of the sublaminates, @ = a/h and b is the width of
the beam. . ¢y, §a. 1y, [2, [y are the same as in eqns (25).

Utilizing the end conditions at ¥’ = —a" (N, = M, =R, =0 and Q, = — P/b), and
the fact that 1 — /2 = 0 at x* = 0, the solutions of the equations for —a’ < x’ < 0 are
as follows:

wslh = = PxX'[bL\\+ Pi’x"[6bD,\+ Ph’a’ x"}[2bD,~ C3x"+ C\/2
iy = C(cosh {ox"+tanh {a’ sinh {(x)+C,
W= = PIPX'Y2bD, - PR’ x'[bD,, +C,

ll?/h C:—C|(5inh C().\'l+tanh C()a’ COSh C(PY’)A |4/A||E()
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Fig. 3. Stress distribution ahead of crack tip in an isotropic DCB specimen—~{rom different solutions.

N =0,
R| = L’|’|C|C(](Sinh C().Y"{“[unh E()a’ cosh Cox,)/h
N4 = C|(cosh C(,x'+tanh Coll’ sinh Coxl) (A44"Af4/.4||)

Q.= —Plb;

where C,, C,, C, are arbitrary constants.

All quantities should decay as x" is increased in the solutions for x’ > 0, which can be
written in the following form (B,, k = 1,2 being arbitrary constants; when {i are complex
{, are their roots with positive real parts such that {, = {; and B, = 8,)

udfh

¥s

N =0; Q=L z BkaexP(—Ck-\")

I

2
z Bi(11Ge — 1/8x) exp (—{eX")
kel

2
2u3(h; Y= Y. Biexp (—{x)

k=1

M, = -~ Ph(x'+a)/b

_244;4[‘}: B(l,—1/53) exp (*Ck~“)]/f4!1
-l

k=)

k=l

1
M = “DH[Z B, (i exp (—C*x')}/h

453

(35)
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i

R, =2L%, Z B(I,{2—1) exp ("‘:kx,)],‘}h
-] 7

Ny=2(A}/A) — A z B (!, e — 1/3) exp (= (X))
k=

1

ty = Dn[i Bl exp (—Ckx')]/h;» (36)
k=

Note that ud—y;4/2 = 0.

Denoting the value of the quantity f(x’) as X" — 0 from the left and from the right as
F{07) and f(07), respectively, the continuity of displacement components at and equi-
librium conditions across x” = 0 (with the consideration of a concentrated force ¢ in the
z-direction at the crack tip and taking an infinitesimal element extending on both sides of
x’ = 0) will be satisfied if

Vi(07) =4¢,(07); w(0") =u(07); uy(0") = uy(07) (37a—)

M©0)=M(0"); Q:(0")-Q, 0 )+#=0: RO=-R (O )—rih2=0.
{38a-¢)

Note that there are six unknowns (C,, C;, C,, By, B,, 15) to be cvaluated from six equations.
Whitney[17] obtained a solution to the problem (with minor differences) for the case of a
homogencous beam without any consideration to the concentrated force ¢5. The equilibrium
equation involving R, eqn (38c), was left unsatisfied, since there are not cnough unknowns
without ¢5. One should note that even if ordinary shear deformation theory is used to solve
the problem the concentrated force ¢ must be considered, otherwise one will be unable to
satisfy the equilibrium equation, eqn (38b), involving Q.. Based on this fact we may
conjecture that even with the use of theories of still higher order, concentrated forces will
exist in such sublaminate assemblage models. Hopefully, this will be investigated in future
studies.

For completeness, the constants obtained from eqns (37a), (37¢) and (38a)-(38¢) which
will be needed later are given below. C, may be obtained from eyn (37b)

By = —[P*(1 + L)+ 15* /0 (L —Ca)
By = [P*(1 +{,a) +5*)/02(8, =)

C,= B, +8,
o P* [a’(l,+14 f.)+1,+{g;.]
L+1, Lifi+1,
Cilo/2 = (@ Llo+ LI fi+1) (39
where /,, [, are given in eqns (31) and
P* = PR[bD,,
15* = 15h*/D,,
/1 =tanh {,a’
Iy =L+t +1,
Lo = (i 4+ U+ 1) (40)

Other relevant quantities like stress distribution for X’ > 0 (77) can be obtained from eqns
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Table 2
Theory Value of C,,
Elasticity[18) 234
Present theory 2.77
Shear deformation theory 1.85

(35) and (36). The gradient of the displacement discontinuity U3 at the crack tip and the
energy release rate are
U =265, +1,)
G, = 1505 41
For ordinary shear deformation theory the concentrated force and the displacement dis-
continuity gradient (denoted with a subscript S) at the tip are
s = P(1+{,a)
Vis = t5/Ly,
= (thszn)m- 42)

For values of @’ such that f; = | (see eqns (40)) the energy relcase rate in eqns (41) can be
expressed in the form

G, = P*h(a'+C,)*[b* Dy, 43)

and a similar expression holds for shear deformation theory C being a constant depending
on the theory used.

For an isotropic plate with Poisson’s ratio v = 0.3 and correction factors of 5/6 (with
1, and L7)) the stress intensity factor calculated to give the same G, can be written in the
same form as that for elasticity theory[18] fora” > 4

P
bJh

where the values of Cq are given in Table 2. Although the contribution of C to G, (or K))
is small for large &', this term is absent in Whitney’s solution[17]. It should be noted that
the energy release rate can also be calculated from

K = [12¢'+ C4) (44)

and the result is the same as in eqns (41) or eqns (42) although the algebra is quite complex
to show this equivalence in the case of eqns (41).

Figure 3 gives the comparison of the stress distribution ahead of the crack tip obtained
for the isotropic case calculated from five solutions.

(1) Elasticity solution[18].

(2) Closed form solution (shear deformation theory).

(3) Closed form solution (present formulation), one sublaminate for z > 0.

(4) Finite element solution based on present formulation with two sublaminates used
to model the half - > 0.

(5) Same as above with four sublaminates.

For methods 4 and 5 we have not used any correction factors, although 5/6 is utilized for
2 and 3. Also given in this figure are the values of concentrated forces and displacement

BAS 24458



436 S. N. CHATTERJEE and V. RAMNATH

gradients at the tip obtained from methods 2-5 which show that the concentrated forces
reduce and the gradients increase gradually as more sublaminates (or higher order theory)
are used. This is consistent with the fact that in the case of the exact solution, the dis-
placement gradients become unbounded. It should be noted, however, that the products of
the force and the gradients for all cases are roughly the same, since energy release rates are
usually not sensitive to the model used. It is seen, however, that the stress distribution ahead
of the tip obtained from the present formulation approach the elasticity solution as the
number of sublaminates is increased.

CONCLUDING REMARKS

The mixed variational principle and the approximate formulation in terms of an
assemblage of sublaminates are shown to provide a powerful. yet relatively inexpensive
computational algorithm for approximate stress analysis in composite laminates in presence
of delaminations. Non-zero values of displacement gradients and concentrated forces at
disbond tips are shown to be the exact mathematical forms of singular fields in the solution
of mixed boundary value problems using the sublaminate assemblage model. Obviously,
they differ from the singular fields in exact elasticity solutions, but better representations
of such ficlds are obtained by increasing the number of sublaminates. It is also shown that
energy release rates can be obtained from the local field at crack tips. which is very useful
in complicated problems. The finite element model described is for quasi-3-D problems and
can be extended to 3-D problems with a little effort and such extensions will result in
substantial reduction in computer time required for 3-D analyses as compared to standard
finite clement methods where layers of different orientations have to be modeled separately.
Results for other delamination problems computed with this model have been compared
extensively in Refl [15] with those from other finite clement methods modcling cach layer,
as well as from numerical solutions based on rigorous clasticity theory. Applications to the
problcm of stress analysis ncar a ply-termination and fracture mechanics analysis of bonded
joints have also been demonstrated in Ref, [15]. The stiffness matrix of triangular elements
required in transition regions for ply drop problems can be found in Ref. [15]. It should be
pointed out that in 3-D or 2-D problems of delaminations between two dissimilar isotropic
or anisotropic layers, oscillatory type stress singularities are often observed which sometimes
result in part closure of disbonds as discussed in Refs [1, 3, 5, 8]. In the present formulation,
such oscillatory singularitics arc absent, but part closures are still possible, and should be
expected if the interactive concentrated force at a tip is compressive in nature. The extent
of such part closures may be determined if an appropriate algorithm is devised for this
purpose. Further studies in this direction will be helpful for obtaining a better understanding
of the effect of interlaminar stress fields on fatigue and fracture behavior on laminated
composite components.
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APPENDIX: ELEMENTS OF SUBMATRICES OF LOCAL STIFFNESS MATRIX

[a, +2p0 b +2p: —day—ay
K" = du+2p; —diy~dy
L Sym. e +2p

[@a=2p10 biy=2pi; apy—agp
(K] = bu=2p: diy=2px dyy—d;;

Lay ~—ay  dy—=dyy e =2p,,
[—an+piy —bi+pi: ay—an ]
(K" = =by+py —dy+p dy—ay,
Lo« —uy, dyy—dy, — P
[ ~ai=pi —hi=pi  aptan ]
(K¥) =) —b, ~piy —dis—pyn  diy+dy
Llln'f'll.v\ dy +dyy =€ 2Py

(22 42p ba242p1y  an+as

(K*) = dy+2pyy  dy+dy,
L Sym. e+2p;5;
(—dy=pi —byu=pi —dy —dyy)
KV = ~bi—py —di=pn; —du—dy
L—ay;—ay, —di—dyy —e3=py,]
[(—as:+pi —byp+py;  dn—ay ]
(K] =|=by+py: —du+py  dn—dy
L dyy=dyy dyy=dyy =€ +pyyd

[ai+2p0 bu+2p: an+ay]
(K= di+2py; dy+dy,
L Sym. ey, +2p;,]

r"l:"3I7n b:=2p,; a,,—-a”-
1K =1b, =2ps di2=2ps dyy—dy,

Lazy—ay,  daiy—dy  €:-2p5, ]

Fass+2p0 bu+2p —ay-—ay,
(K = dy+2py; —dy—dy,
L Sym. e +2py,
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where

i3 BIS+BJI Dl) ‘4IJ BIJ_BJI
bu=\T *?/L”’T“—E_—
Ay Bi3—By Dy 4,3 B,+By,
=22 2V b, = (T2 L]
bz, (4* 1) A /I Sl PR
AN B_u _Au B.u
dy =g tayE =g Ty

D, A, /
d”=<ﬁ£+£hﬂ+ h:")//. d.::(f——[;‘%‘)/l

T R
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¢y = y ) i I
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